Fast high-resolution T1 mapping using inversion-recovery Look-Locker echo-planar imaging at steady state: optimization for accuracy and reliability.

نویسندگان

  • Wanyong Shin
  • Hong Gu
  • Yihong Yang
چکیده

A fast T(1) measurement sequence using inversion recovery Look-Locker echo-planar imaging at steady state (IR LL-EPI SS) is presented. Delay time for a full magnetization recovery is not required in the sequence, saving acquisition time significantly for high-resolution T(1) mapping. Imaging parameters of the IR LL-EPI SS sequence were optimized to minimize the bias from the excitation pulses imperfection and to maximize the accuracy and reliability of T(1) measurements, which are critical for its applications. Compared with the conventional inversion recovery Look-Locker echo-planar imaging (IR LL-EPI) sequence, IR LL-EPI SS method preserves similar accuracy and reliability, while saving 20% in acquisition time. Optimized IR LL-EPI SS provided quantitative T(1) mapping with 1 x 1 x 4 mm(3) resolution and whole-brain coverage (28 slices) in approximately 4 min.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid T1 mapping of mouse myocardium with saturation recovery Look-Locker method.

Dynamic contrast-enhanced MRI using gadolinium or manganese provides unique characterization of myocardium and its pathology. In this study, an electrocardiography (ECG) triggered saturation recovery Look-Locker method was developed and validated for fast cardiac T(1) mapping in small animal models. By sampling the initial portion of the longitudinal magnetization recovery curve, high temporal ...

متن کامل

Optimization of Look-Locker Turbo-Field Echo-Planar Imaging and Evaluation of Its Accuracy in Head and Neck 3D T1 Mapping

PURPOSE We present a sequence for T1 relaxation-time mapping that enables a rapid and accurate measuring. The sequence is based on the Look-Locker method by employing turbo-field echo-planar imaging (TFEPI) acquisitions and time to free relaxation after constant application of the radiofrequency (RF) pulses. We optimized the sequence, and then evaluated the accuracy of the method in imaging of ...

متن کامل

B 1 Correction using Dual Tau Look - Locker ( D τ LL )

Introduction: Transmit B1 inhomogeneity has become an increasingly obvious problem in high field human MRI. As higher field main magnets are used, wavelength effects distort the RF field, leading to image intensity gradients and incorrect values in quantitative maps, in particular in fast T1 and T2 mapping methods such as DESPOT1 and DESPOT2 [1], which require accurate knowledge of the flip ang...

متن کامل

Modulated repetition time look-locker (MORTLL): a method for rapid high resolution three-dimensional T1 mapping.

PURPOSE To demonstrate a modification of the Look-Locker (LL) technique that enables rapid high resolution T1 mapping over the physiologic range of intracranial T1 values, ranging from white matter to cerebrospinal fluid (CSF). This is achieved by use of a three-dimensional (3D) balanced steady-state free precession (b-SSFP) acquisition (for high signal-to-noise and resolution) along with varia...

متن کامل

Temporally resolved parametric assessment of Z-magnetization recovery (TOPAZ): Dynamic myocardial T1 mapping using a cine steady-state look-locker approach.

PURPOSE To develop and evaluate a cardiac phase-resolved myocardial T1 mapping sequence. METHODS The proposed method for temporally resolved parametric assessment of Z-magnetization recovery (TOPAZ) is based on contiguous fast low-angle shot imaging readout after magnetization inversion from the pulsed steady state. Thereby, segmented k-space data are acquired over multiple heartbeats, before...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 61 4  شماره 

صفحات  -

تاریخ انتشار 2009